一道不等式的证明题设a>0,a1,t>0 试比较(1/2)loga(t)与log2[1/2(t+1)]的大小,并证明你的结论.思路即可.

来源:学生作业帮助网 编辑:作业帮 时间:2022/08/09 04:31:56

一道不等式的证明题
设a>0,a1,t>0 试比较(1/2)loga(t)与log2[1/2(t+1)]的大小,并证明你的结论.
思路即可.

由基本不等式1/2(t+1)≥1/2*2√t
即1/2(t+1)≥√t
当a>1时 loga(x)单调递增
则loga[1/2(t+1)]≥loga(√t)
即loga[1/2(t+1)]≥1/2loga(t)
当a

一道不等式的证明题设a>0,a1,t>0 试比较(1/2)loga(t)与log2[1/2(t+1)]的大小,并证明你的结论.思路即可. 用分析法证明一道不等式的证明题设a>0,b>0,2c>a+b,求证:c-√c^2-ab 高等数学一道基础的数学证明题设a>b>0,证明:(a-b)/a 高数证明不等式的一道题!当0 高一数学不等式的证明题一道0 一道高中数学不等式证明题.设a,b,c>0,求证1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c) 一道线性代数证明题Aa1=0.Aa2=a1,A^2(a3)=a1 求证a1 a2 a3 线性无关..都是非0的 高二用归纳法证明不等式的一道题 Ai>0(i=1,2,3...n) 且A1 +A2+.+An=1证明A1^2+A2^2+...+An^2>=1/n (n>=2 属于整数) 一道高中数学不等式的证明已知|a| 线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, 设b大于a大于0,证明不等式如图 一道矩阵证明题:设A为m*n实矩阵,证明:若AA^T=0,则A=0.要求用秩和初等矩阵的知识来做 一道不等式证明题 一道矩阵的题目,急!设向量a=(a1,a2,a3)^T ,其中a1不等于0,A=Ek(a^T)a为正交矩阵,其中k不等于0 (用^T来表示转置)第一问是问k,算出来是-2/(a1^2+a2^2+a3^2),没问题.第二问问的是求P使得 (P^-1)AP为对角矩 设矩阵A按列分块为A=[a1,a2,a3],其中a1,a2线性无关,且2a1-a2+a3=0,向量β=a1+2a2+3a3≠0证明:线性方程组Ax=β的通解为x=(1,2,3)^T+c(2,-1,1)^T,其中c为任意常数. 设矩阵A按列分块为A=[a1,a2,a3],其中a1,a2 线性无关,且2a1-a2+a3=0,向量B=a1+2a2+3a3不等于0,证明:线性方程组AX=B的通解为x=(1,2,3)^T+c(2,-1,1)^T 【高中数学证明题一道】设a1>a2>…>an>an+1,求证1/(a1-a2)+1/(a2-a3)+…+1/(an-an+1)+1/(an+1-a1)>0.设a1>a2>…>an>an+1,求证1/(a1-a2)+1/(a2-a3)+…+1/(an-an+1)+1/(an+1-a1)>0.最好能用上柯西不等式或均值不等式。 一道高三数列题,急已知数列{an},满足a1=a+2(a大于等于0)an+1=根号下(an+a)/2,n属于N* (1)若a=0求{an}通项公式 (2)设bn=|an+1-an|数列{bn}的前n项和Sn,证明Sn大于a1